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Abstract

Simulations of flow and heat transfer around deforming objects require the accurate resolution of the moving interface. An approach
that combines the Hybrid Immersed Boundary Method (HIBM) for handling complex moving boundaries and the Material Point
Method (MPM) for resolving structural stresses and the movement of the deformable body is presented here. In the HIBM, a fixed Eule-
rian, curvilinear grid is generally defined, and the variable values at grid points adjacent to a curvilinear boundary are interpolated to
satisfy the boundary conditions. The MPM is used to solve equations of the solid structure (stresses and deflection) and communicates
with the flow equations through appropriate interface-boundary conditions. As a validation of the new approach for heat transfer prob-
lems, flow and heat transfer past a rigid and deforming isothermal sphere is simulated. Predictions agree well with published results of
Nusselt number for flow past a rigid sphere.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

In many applications involving heat transfer, surfaces
that deform under the action of the fluid flow are encoun-
tered. These problems which involve fluid–structure interac-

tion (FSI) require specific treatment in the vicinity of the
interface. Examples include applications in thermal sprays,
injection molding, and polymer processing.

Numerical approaches for solving FSI problems are
broadly classified as: fixed-grid (Eulerian) or moving-grid
(Lagrangian or Arbitrary Lagrangian–Eulerian) methods
[1]. Fixed-grid methods generally embody a surface-captur-
ing strategy [2], and the interface has a non-zero thickness
and is diffuse [1]. Moving-grid methods belong to the sur-

face-tracking family, since with these approaches the inter-
face is maintained to be sharp with an essentially zero
thickness. Popular moving-grid methods for solving FSI
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problems are the Lagrangian [3] and Arbitrary Lagrangi-

anEulerian (ALE) methods [4,5]. A purely Lagrangian
method was employed by Belytschko and Kennedy [6],
and Donea et al. [7] to study hydro-structural interactions.
However, ALE methods are more popular, since they use a
moving-grid that follows the deforming boundaries and
allows the resolution needed near the boundary [4,5,8].
However, due to the need for the mesh to conform to the
body at all times, they are inherently limited to problems
with moderate body deformations.

Fixed-grid approaches have been widely used due to the
ease of generating a fixed-grid. Different strategies with a
fixed-grid have been proposed. In the Cut-Cell Method

[9–15] the boundary cells and fluxes adjacent to the com-
plex interface are redefined at each step. In the Volume of

Fluid Method (VOF) [16,17] the interface is reconstructed
from the fractional volume of fluid content in each cell
through special surface functions which are used to distin-
guish one fluid from another. Level Set Methods (LSM)
were introduced by Osher and Sethian [18] and rely on
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Nomenclature

bs specific body force at the material point (m/s2)
bs;i body force at the nodes of the background grid

(N)
Cps pressure coefficient
c1; c2 constants in Mooney law
Cd drag coefficient
eg gravity force-directed unit vector
f int

i internal force at the nodes of the background
grid (N)

fext
i external force at the nodes of the background

grid (N)
g specific gravitational force (m/s2)
Gr Grashof number
GiðrsÞ gradient of the shape function (1/m)
h0 initial thickness of a shell (m)
L0 characteristic length (m)
ms mass of material point (kg)
mi mass at the nodes of the background grid (kg)
nC normal to the surface of the body
Ns number of the material points
Nu Nusselt number
p fluid pressure (Pa)
pC

i traction vector at the background grid (N)
pCðrs; tÞ specific traction vector at the material point

(N m/kg)
Pr Prandtl number
r0 initial radius (m)

rn
s current position of the material points (m)

Re Reynolds number
Siðrn

s Þ shape function
tn current numerical time step
T fluid temperature (K)
T 0 characteristic temperature (K)
T C temperature of the immersed surface (K)
us displacement of the material point (m)
vC velocity of the immersed surface (m/s)
vn

s velocity of material point (m/s)
vi velocity at the nodes of the background grid (m/

s)
v0 characteristic velocity (m/s)
v fluid velocity (m/s)
xs length of the bubble behind the sphere (m)

Greek symbols

a thermal diffusivity (m2/s)
bT coefficient of thermal expansion (1/K)
en

s strain of material point
m kinematic viscosity (m2/s)
qn

s density of material point (kg/m3)
rs Cauchy stress tensor (Pa)
rf stress tensor of the fluid (Pa)
rn

s Cauchy stress tensor of material point (Pa)
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an implicit formulation of the interface whose zero-level
set always gives the location of the propagating interface
through a solution of the time-dependent initial-value
problem. These methods are attractive because they admit
a convenient description of topologically complex inter-
faces and are quite simple to implement [19,20]. The Ficti-

tious Domain Method (FDM) was introduced by Saul’ev
[21] and has been primarily applied to the interaction of
fluid with rigid body particles by Glowinski et al. [22,23].
The main idea of FDM consists of coupling of moving rigid
particles with fluid by using a Lagrangian multiplier. A new
method combining the fictitious domain [22] and the mor-
tar element [24] methods for the computational analysis of
fluid–structure interaction of a Newtonian fluid with slen-
der bodies was developed by Baaijens [25]. An extension
of this approach was used to describe the motion of a large
leaflet and its interaction with the surrounding fluid [26].

The Immersed Boundary Method (IBM) was introduced
by Peskin [27] to study the flow in a heart valve. The idea
was very useful to solve FSI problems that included the free
movement of a structure through a fluid domain. The inter-
action between the fluid and a deformable body was real-
ized through nodal forces at selected grid points
incorporated in the momentum equations. These external
terms were spread over the computational domain through
smoothed approximation of the Dirac delta function and
satisfied the boundary conditions on the surface. This
approach is associated with some disadvantages inherent
to the diffuse-interface methods. For example, IBM is only
first-order accurate in space and the boundary spreads over
3–5 grid nodes. A short review of Immersed Boundary and
Cartesian Cut Methods for flows with moving boundaries
was recently published by Mittal and Iaccarino [28].

The Immersed Interface Method (IIM) was designed
by LeVeque and Li [29] to further develop the IBM of
Peskin [30]. Instead of using a smooth approximation
of the delta function, the IIM used approximations of
the delta function with discontinuity across the boundary
(jump conditions). Thus, the IIM is classified as a sharp-
interface method. In [31,32] it was shown that IIM has
second-order accuracy and is free from shortcomings of
IBM. The Immersed Finite Element Method was devel-
oped by Zhang et al. [33] where the fluid and solid body
are modeled with the finite element method. To avoid
expensive grid regeneration, a fixed Eulerian grid for
the fluid was used. The connection between the Lagrang-
ian solid body and the fluid was implemented as in the
IBM, but instead of the Dirac delta function, the
higher-order reproducing kernel particle method (RKPM)
[34] delta function was used.
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A variant of the classical IBM [27] approach that does
not require the explicit addition of discrete forces to the
governing equations was developed by Mohd-Yusof [35]
and Fadlun et al. [36]. This approach treats the solid
boundary as a sharp interface. The specific values of vari-
ous flow variables at the near-boundary nodes are calcu-
lated by interpolating linearly along an appropriate grid
line between the nearest interior node, where flow variables
are available from the solution of the governing equations,
and the point where the grid line intersects the solid bound-
ary, where physical boundary conditions are known. This
approach can be classified as a Hybrid Cartesian-Immersed

Boundary (HCIB) approach [36].
A new HCIB formulation applicable to three-dimen-

sional flows with arbitrarily complex immersed boundaries
moving with prescribed motion was developed in [37]. This
methodology maintains a sharp fluid-body interface by dis-
cretizing the body surface using an unstructured, triangular
mesh. The nodes of this mesh constitute a set of Lagrang-
ian control points, which are used to track the motion and
reconstruct the instantaneous shape of the moving
immersed boundary. The reconstruction of the solution
at the near-boundary nodes is carried out using interpola-
tion along the normal to the body [38].

The most common strategy for solving structural defor-
mation in problem involving fluid–structure interaction is
the finite element method (FEM) [39]. In contrast to these
studies, the material point method (MPM) [40] has certain
advantage over standard FEM including the ability to han-
dle large structural deformations. While the MPM has
been demonstrated in a number of studies to be an effective
strategy for solid objects, its use in resolving FSI is limited
to that of York et al. [41] who utilized an MPM approach
both the fluid and solid.

The purpose of this study is to develop a numerical
method to simulate heat transfer problems for deformable
bodies moving and interacting with the surrounding fluid.
Our method combines HCIB method [37] to resolve the
flow around a body with complex shape and MPM [41]
to solve for the deformation of the solid structure moving
under forces from the surrounding fluid. Instead of
HCIBM which uses a Cartesian grid, we use the term
HIBM to emphasize that we have realized this method in
general curvilinear grid [42,43]. The method is validated
by solving for sphere falling in a channel/box under the
action of gravitational forces. The predicted data is in
excellent agreement with experimental data of Cate et al.
[44]. Because a full system of HIBM & MPM equations
was solved (on the assumption that solid body has a high
rigidity) this test validates FSI algorithm. For the valida-
tion of the heat transfer problem, a steady flow past a
hot sphere was considered and predictions were compared
with data of Bagchi et al. [45]. The calculated Nusselt num-
bers are in good agreement with the cited data. The HIBM
& MPM approach was finally applied to a deforming
sphere and the difference in heat transfer between a rigid
and deforming sphere are presented and discussed.
The focus of this paper is to demonstrate the applicability
of the HIBM and MPM strategy for FSI problems involving
heat transfer. To our knowledge, this is the first application
of such an approach for heat transfer problems.

2. Governing equations

The specific aim of the present paper is to develop and
validate an efficient numerical method for simulating
unsteady, three-dimensional flows and heat transfer for
complex and deformable bodies. The unsteady, 3D, incom-
pressible Navier–Stokes (NS) equations are solved using an
efficient finite-difference method that is second-order accu-
rate both in space and time. A hybrid approach that com-
bines curvilinear grids, and the immersed boundary
method was used to develop a powerful and very general
methodology for efficiently and accurately resolving all
geometrical features of flow. The deformations of the
bodies are calculated as part of the solution procedure by
implementing a fluid–structure interaction (FSI) model.
The mathematical model consists of the momentum equa-
tions for the flow, the equations for the material velocity
(deformation rate) for the solid body, the continuity and
energy equations for the fluid, the continuity equation for
the solid structure, and the appropriate boundary
conditions.

Flow and heat transfer in the fluid region is described by
the full 3D Navier–Stokes equations and the energy equa-
tions with the Boussinesq approximation as

r � v ¼ 0; ð1Þ
ov

ot
þ ðv � rÞvþrp ¼ 1

Re
Dvþ Gr

Re2
T eg; ð2Þ

oT
ot
þ ðv � rÞT ¼ 1

RePr
DT ; ð3Þ

where v is the velocity, p is the pressure, T is the tempera-
ture, eg is the gravity force-directed unit vector. These
equations were normalized as

x ¼ ~x
L0

; v ¼ ~v
v0

; t ¼
~t
t0

; p ¼ ep
p0

; T ¼
eT �fT 0fT w �fT 0

where the tilde denotes dimensional quantities, L0 (m), v0

(m/s), T 0 (K) are some characteristic length, velocity, and
temperature.

The key non-dimensional numbers are

Re ¼ v0L0

m
; Pr ¼ m

a
; Gr ¼ bTðT C � T 0ÞgL3

0

m2

where Re is the Reynolds number, Pr is the Prandtl num-
ber, Gr is the Grashof number, m is the kinematic viscosity,
a is the thermal diffusivity, bT is the coefficient of thermal
expansion, g is the specific gravitational force, T C is the
temperature of the immersed body.

The equations for the solid deformable body are given in
an Eulerian frame because, as discussed later an Eulerian
background grid is used to solve the solid body equations:



Fig. 1. Computational region for fluid Xf and immersed body Xs. Cr is the
boundary with imposed force from fluid.
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dqs

dt
þ qsr � vs ¼ 0; ð4Þ

qs
dvs

dt
¼ r � rs þ qsbs; ð5Þ

where vs ¼ dus=dt is velocity, us is displacement, rs is the
Cauchy stress tensor, bs is the specific body force. Relations
between the strain and the stress tensor given by the Moo-
ney’s law [46].

In order to get a numerical solution for a given FSI

problem, boundary conditions must be specified for the
above-mentioned systems of equations (see Fig. 1 for
notations):

(a) boundary condition for fluid velocity v and tempera-
ture T are implemented on the immersed surface
v ¼ vC; T ¼ T C; on Cr; ð6Þ

where vC is velocity, T C is the temperature of the im-
mersed surface,
(b) boundary condition for the surface traction
rf � nC ¼ pC; on Cr; ð7Þ

where rf is stress tensor of the fluid, pC is the traction
vector, nC is the normal to the surface C.
3. Solution procedure

3.1. Solution of the fluid equations

The discrete equations are integrated in time via a sec-
ond-order accurate dual time-stepping, artificial compress-
ibility iteration scheme. To solve the system of governing
equations (1)–(3), a pressure-based Residual Smoothing
Operator, Multistage Pseudocompressibility Algorithm
developed by Sotiropoulos and Constantinescu [47] was
used. This approach incorporates the idea of combining
pressure-based method [48] and the Artificial Compressibil-
ity [49] method to get an efficient diagonal pressure-based
operator which was implemented in a four-stage Runga–
Kutta algorithm. Sotiropoulos and Constantinescu [47]
have shown that this algorithm substantially enhances the
damping of high-frequency errors on large aspect ratio
meshes. Since details of this algorithm are available in ear-
lier papers [47–49], additional details are not given here.
3.2. Solution of the solid equations

The Material Point Method (MPM) [40,41,50,51] is used
for solving the governing equations for the solid structure
(Eq. (4) and (5)). The common approach for solving solid
mechanic problems is the finite element method (FEM),
but as noted earlier, in problems with large material defor-
mations, the mesh can get quite distorted, and in such case
can lead to loss of accuracy. The MPM is a meshless
method that is conceptually derived from the particle in cell
method of Harlow [52], and was developed to accommo-
date large distortions. This property of MPM is clearly
an advantage in comparison with the FEM.

We will briefly describe the algorithm of MPM. The
solid domain is covered with an arbitrary number of mate-
rial points. Let rn

s ; s ¼ 1; . . . Ns denote the current position
of the material points at time tn, N s is the number of the
material points. Each material point has an associated
mass, ms, density, qn

s , velocity, vn
s , Cauchy stress tensor,

rn
s , and strain, en

s at time tn. In the present HIBM &
MPM we obtain the solution of the solid equations on a
Cartesian background grid which is independent from the
fluid grid. The momentum equations (5) are interpolated
to the Cartesian background grid i by means of shape func-
tions Siðrn

s Þ similar to those used in a standard FEM tech-
niques to get the system of algebraic equations. In all the
notations we will use here, the subscript s will denote mate-
rial points and the subscript i (j) will represent the back-
ground grid nodes. The momentum equation (5) on the
background grid (weak form) is given by [41]

mi
dvi

dt
¼ f int

i þ fext
i ; ð8Þ

where f int
i is the internal force, fext

i is the external force,
mi ¼

PNs
s¼1msSiðrsÞ is the mass, vi ¼

PNs
s¼1vsSiðrsÞ is the

velocity on the background grid. Internal and external
forces are given by

f int
i ¼ �

XNs

s¼1

ðms=qsÞrs � GiðrsÞ; ð9Þ

fext
i ¼ pC;t

i þ bs;i; ð10Þ

where GiðrsÞ ¼ $Sijrs
¼ ½oSi=ox; oSi=oy; oSi=oz�Trs

, is the gra-
dient of the shape functions, and the discrete specific trac-
tion vector on the background grid is

pC
i ¼

XNs

s¼1

msp
Cðrs; tÞSiðrsÞh�1ðrs; tÞ; ð11Þ



Table 1
Inflating elastic sphere: comparison of calculated strain-pressure depen-
dence with analytical solution [46]

r0p=8h0c1 k1

350 D elements
k1

1026 D elements
k1

3782 D elements
Analytical
solution [46]

0.55 1.05 1.08 1.08 1.082
0.94 1.12 1.15 1.16 1.19
1.24 1.25 1.32 1.35 1.42
1.54 1.71 1.92 2.11 2.19
1.87 2.52 2.81 3.01 3.11
2.45 3.82 4.08 4.41 4.45

Fig. 2. Picture of a box used in experiment of [44].
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where pCðrs; tÞ is a specific traction vector at the material
points on the surface of the solid body (i.e., traction di-
vided by mass density), h�1ðrs; tÞ is the thickness of a shell
or membrane (only such objects are considered in this pa-
per). The body force is represented as

bs;i ¼
XNs

s¼1

msbsðrs; tÞSiðrsÞ: ð12Þ

Eqs. (8)–(12) are solved by using an explicit finite-difference
scheme [41].

3.3. Fluid–structure interaction algorithm

At every instant in time, the influence of the body on the
flow is accounted for by applying boundary conditions at
grid nodes located in the immediate vicinity of the body.
The immersed boundary is treated as a sharp interface
and the solution in its vicinity is reconstructed using inter-
polation along the local normal to the body [38]. Boundary
conditions from the fluid on the solid immersed body
define its motion. The complete fluid–structure interaction
algorithm is implemented by solving Eqs. (1)–(7). At every
time step we solve the Navier–Stokes equations (1)–(3) for
the known geometry of the immersed body and boundary
conditions at the immersed boundary nodes (6). Next, we
define the boundary conditions (7) on the solid surface rep-
resented by fluid stresses acting on the body. Under the
influence of boundary stresses or forces, the body is
deformed according to Eqs. (4) and (5). New coordinates
of the immersed body and boundary conditions at
immersed boundary nodes for fluid (6) are established
which are used for the solution of the Navier–Stokes equa-
tions at the next time step.

4. Validation tests

The goal of the present paper is to validate the combined
HIBM & MPM as a strategy for solving FSI problems with
strong structural deflections and heat transfer between the
deformable body and fluid. In this section we will present
several validation studies and compare with available
data/theory/published simulations to demonstrate the
accuracy of the approach.

4.1. Inflating elastic sphere

As a first step to verify the MPM, we have solved the
problem of an inflating spherical elastic shell under the
action of internal pressure. For Mooney’s material an ana-
lytical solution that provides the relation between the
radial deformations k1 and the pressure p is known [46]

p ¼ 8h0

r0k1

ð1� k�6
1 Þðc1 þ c2k

2
1Þ; ð13Þ

where r0 is the initial radius, h0 ¼ 0:02r0 is the initial thick-
ness of a shell, and c1 ¼ 20 and c2 ¼ 10 represent of the
Mooney material given by the equation for the stress T 1

acting on the membrane [46]

T 1 ¼ 4h0ð1� k�6
1 Þ c1 þ c2k

2
1

� �
:

The sphere surface was discretized with 350, 1026, and
3782 triangular elements and solutions for three meshes
are shown in Table 1. In order to get the needed stationary
solution we have used a quasi-stationary approach. The
pressure inside the sphere was increased incrementally
and at each value of the internal pressure the steady solu-
tion was found. As seen in Table 1 the agreement of our
numerical solution with the analytical solution is good with
a maximum deviations of less that 5%.

4.2. Sphere falling in a box under gravity

To validate the HIBM & MPM algorithm we solved a
problem of a sphere falling in a channel (with a closed bot-
tom) under the action of gravitational forces. We com-
pared the data from experiment of Cate et al. [44] with
the present numerical simulation obtained by the solution
of the coupled system of fluid and solid equations. The
complete HIBM & MPM algorithm was implemented
and tested. Cate et al. [44] performed experimental and
computational studies of nylon sphere with a diameter
d = 0.015 m and density qs ¼ 1120 kg=m3 falling in a box
with size of 0.1 � 0.1 � 0.16 m3 under the action of gravi-
tational force. The initial position of the particle was at a



Table 2
Fluid properties in the experiments of Cate et al. [44]

# Experiment qf (kg/m3) lf (10�3 Pa s) u1 (m/s) Re

1 962 113 0.091 11.6
2 960 58 0.128 31.9

Fig. 3. Simulation of falling a sphere in a tube. (a) Re = 11.6. (b)
Re = 31.9. Three types of grid were used, solid (I) 25 � 25 � 40, dotted
(II) 50 � 50 � 80, and dashed (III) 100 � 100 � 160. Experimental data
[44] shown in open circle.
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height h = 0.12 m from the bottom of the box (Fig. 2). As
the particle is rigid, in the FSI algorithm we used high
rigidity of the material of the sphere represented by
c1 ¼ 105; c2 ¼ 105, where c1, c2 are constants describing
the properties of Mooney’s material [46].

Table 2 shows the property data of two experiments
used in our simulations at two Reynolds numbers,
Re ¼ 11:6 and 31.9. The Reynolds number was defined
on the basis of the terminal velocity of the particle as given
by Abraham [53].

To discretize the computational region we used three
grids to show the accuracy and convergence of computa-
tional data: (I) – 25� 25� 40, (II) – 50� 50� 80, and
(III) – 100� 100� 160 grid nodes. For all grids, a physical
time step of Dt ¼ 10�2 was used. The sphere surface was
discretized with 350/177, 1026/515 and 3782/1893 triangu-
lar elements/nodes respectively for the three different sets
of grid (I), (II), and (III). In accordance with the experi-
ments, non-slip boundary conditions were utilized at all
walls of the box and non-reflecting boundary conditions
[54] was implemented on the top boundary.

Fig. 3 shows the time history of velocities of the particle
falling in the box for (a) Re ¼ 11:6, and (b) Re ¼ 31:9. Data
are presented for three types of grids (I)–(III) and it is evi-
dent that the finest grid solution convergence to the exper-
imental data for both cases. As is seen from Fig. 3, the
particle experiences an initial acceleration, followed by
steady fall and deceleration near the bottom of the box,
due to influence of the lower solid boundary. We do not
use any special strategy for simulating the force on the par-
ticle when it approaches the bottom of the box [44,55], and
because of this, the predictions for settling velocities are
shown only up to the time instances when particles begin
to decelerate. We note that the deceleration of particles
depends on the grid and begins earlier for the coarser grid.
For the finest grid 100 � 100 � 160 comparison of experi-
mental and computed data shows good agreement.

Fig. 4 shows the time history of the drag coefficient for
Re ¼ 11:2 and Re ¼ 31:9 in the time interval 0s 6 t 6 1s.
Eq. (14) provides the expression for the steady drag coeffi-
cient given by Abraham [53]

Cd ¼
24

9:062

9:06ffiffiffiffiffiffi
Re
p þ 1

� �2

: ð14Þ

The steady values of Cd predicted for both Reynolds num-
bers are close to Eq. (14), as shown in Fig. 4, and the dif-
ference between them is less than 10%.

The pressure contours and velocity streamlines are
shown in Fig. 5 at three different time instances during
the descent of the particle for Re ¼ 11:6. The sphere is seen
to retain its originally spherical shape at each time step
indicating that the structural calculations are correctly pre-
dicting negligible deformations of the rigid shell. The flow
field appears to predict the correct qualitative features with
the flow symmetry across the channel centerline, separation
near h ¼ 900, and higher pressures at the stagnation leading
edge of the sphere.

4.3. Validation of heat transfer. Flow past a hot rigid sphere

To validate HIBM & MPM method for heat transfer
problems, flow past a hot rigid sphere was studied for the
steady case and compared with the direct simulation results
in [45].



Fig. 4. Time history of the drag coefficient Cd for two Reynolds numbers:
solid line is Re ¼ 11:6, dashed line is Re ¼ 31:9. Exact solutions are data
from [53].

Fig. 6. Simulation of flow past a sphere. Streamlines and stretched grid in
the vicinity of the sphere for Re ¼ 100.

Fig. 7. Simulation of flow past a sphere. Variation of Nusselt number for
flow past a sphere for Re ¼ 50; 100; 200. Solid lines are h ¼ 0:05, dashed
lines are h ¼ 0:025. Circles, diamonds, and gradients are data from Bagchi
et al. [45].
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The simulations were performed for Reynolds number
Re ¼ 50, 100, and 200. Flow past a fixed sphere, in the form
of streamlines, are shown in Fig. 6 for Re = 100. The size
of grid in vicinity of the sphere is h ¼ 0:025, and the corre-
sponding length of the bubble behind the sphere is
xs ¼ 0:86. This represents a discrepancy of less than that
5% from the solution in [56].

For a quantitative assessment of a heat transfer from the
sphere, the dimensionless local heat transfer coefficient or
the Nusselt number is defined as

Nu ¼ rT � ns;

where ns is a normal vector to the surface of the sphere.
Fig. 7 shows a variation of Nusselt numbers for Re ¼ 50,
100, and 200 for grids h ¼ 0:05, and h ¼ 0:025. In our case
h=p ¼ 0 corresponds to the front stagnation point and
h=p ¼ 1 is the rear stagnation point of the body. Our pre-
Fig. 5. Simulation of falling rigid sphere in a tube. Re ¼ 11:6. Conto
dictions show good agreement with [45] for the finest grid
h ¼ 0:025, with the differences being less than 5%. This
confirms that a grid size h ¼ 0:025 can be used for simula-
tion of heat transfer problems for Reynolds numbers
Re ¼ 50 to Re ¼ 200.
urs of pressure and streamlines, t1 ¼ 0:4 s, t2 ¼ 0:8 s, t3 ¼ 1:2 s.



4422 A. Gilmanov, S. Acharya / International Journal of Heat and Mass Transfer 51 (2008) 4415–4426
5. Heat transfer from a solid and deformable sphere

As a final example involving heat transfer, we consider a
hot deformable sphere falling in a channel under the action
of a gravitational force. A number of practical examples
that involve moving hot spheres include spray cooling,
plasma sprays, quenching of ball bearings, etc. For simplic-
ity, we consider here the case of an isothermal sphere, and
examine the Nusselt number around the sphere with defor-
mations. While we have considered isothermal sphere in
this paper, conjugate heat transfer aspects that include
the solution of heat conduction equation inside the sphere
can easily be incorporated.

Calculations were carried out for a Reynolds number
Re ¼ 50; 100 and Prandtl number Pr ¼ 0:72 on the uniform
grid with 81 � 81 � 241 nodes ðh ¼ 0:05Þ. The sphere sur-
face was discretized with 1026 triangular elements. The ini-
tial non-dimensional temperature for the fluid is T 0 ¼ 0,
the temperature of the sphere is held constant at T C ¼ 1.
On the top, bottom and on the sides of computational
region non-reflecting boundary conditions for velocity
and pressure, and oT=on ¼ 0 for temperature are used.

Fig. 8 shows the streamlines and temperature contours
for the rigid and soft sphere (with material properties:
c1 ¼ 20, c2 ¼ 10) in stationary coordinate system. The
deformable body has moved further downstream com-
Fig. 8. Streamlines superposed on temperature contours for falling (a)
rigid and (b) soft spheres, Re = 50. Stationary coordinate system. In Figs.
9–13, the parameters c1 ¼ 20, c2 ¼ 10 are used for the soft sphere.
pared to the rigid sphere. This is due to an initial decrease
of the drag forces during the early-descent period. While
the general flow distribution around both rigid and soft
sphere are similar, there are noticeable differences when
examined in a moving coordinate system (Fig. 9).

Fig. 9 shows the streamlines and temperature contours
for steady flow past a rigid sphere (Fig. 9a), and b corre-
sponding plots for the falling sphere (both rigid, Fig. 9b
Fig. 9. Streamlines superposed on temperature contours for (a) steady
flow past a rigid sphere, (b) falling rigid sphere, and (c) falling soft sphere.
In (b) and (c) the mean velocity of the sphere is subtracted from the flow
field to enable comparison with (a). Re = 50.
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and deforming, Fig. 9c) at a given instance in time with the
mean velocity of the moving sphere subtracted from the
velocity field (coordinate frame fixed to the sphere so that
relevant comparisons can be made with Fig. 9a). It can
be clearly seen that the deformation of the sphere leads
to a large separated wake region (Fig. 9c) relative to the
rigid sphere (Fig. 9b). A careful examination of the temper-
ature contours also indicates that higher temperatures
(lower Nusselt numbers) are seen in the wake region of
the deformed sphere.

Fig. 10 shows the temperature contours and velocity
vectors at three different time instances t1 ¼ 0:1, t2 ¼ 9:0,
and t3 ¼ 18:0 during the motion of the soft sphere. It can
be seen that the body is deformed progressively under the
action of fluid stresses. The deformed sphere has a pear-
shape with a larger cross-section at the top and a narrow-
ing towards the front. As the body deforms the flow sepa-
ration near h=p ¼ 0:5 appears to be influenced, becoming
progressively smaller.

Fig. 11 shows variations of Nusselt number along the
surface of the deformable body at three instants of time
t1 ¼ 0:1, t2 ¼ 9:0, and t3 ¼ 18:0 (see Fig. 10) during the des-
cent of the body for Re ¼ 50. For the falling rigid sphere,
the Nu distribution approaches the steady-rigid sphere dis-
tribution with increasing time. The peak Nu occurs at the
stagnation point h=p ¼ 0, while the minimum Nu occurs
at h=p ¼ 1 in all these cases. However, for the deforming
Fig. 10. Instantaneous streamlines and temperature contours at the y = constan
a falling soft hot sphere in the channel for Re = 100. Temperature levels are c
sphere, the distribution looks substantially different. The
Nu values are generally lower, and the distributions exhibit
significant non-uniformity with h=p. The Nu minimum, at
later instances in time, occurs in the range of
0:5 < h=p < 0:8 instead of h=p ¼ 1 for the rigid cases. Only
Numax in front of body and a local Numin on the back side of
the body are close to the Nu number for rigid sphere. Glo-
bal Numin is close to point on the body with maximum
curvature.

Fig. 12 shows the variations of Nusselt number along
the surface of the deformable body at three instants of time
during the descent of the body for Re ¼ 100. In this case as
well as for Re ¼ 50, heat transfer ðNuÞ is less than in case of
steady flow around a rigid sphere. The leading edge Nusselt
number are clearly lower for the deforming sphere com-
pared to the rigid sphere, and the minimum in Nu occurs
at an earlier h=p.

Pressure coefficient Cps ¼ ðp � p1Þ=0:5qv2
0 on the surface

of the deforming body at different instants of time is shown
on Fig. 13 for Re ¼ 100. In comparison with steady flow
around the rigid sphere (solid line) and the falling rigid
sphere (lines with dark circles) one can see a difference in
the pressure distribution between the deformable and the
rigid body. These differences are significant at time t1 but
with the increasing time the pressure coefficient approaches
the rigid sphere value. It can seen that for the deforming
sphere there is a reduction in the pressure on the back side
t mid-plane at three time instances t1 ¼ 0:1, t2 ¼ 9:0, and t3 ¼ 18:0 around
hanged from T 0 ¼0 to T w ¼ 1:0 with step DT ¼ 0:05.



Fig. 11. Variation of Nusselt number for Re ¼ 50 for rigid and deform-
able spheres ðc1 ¼ 20; c2 ¼ 10Þ. Time levels t1, t2, and t3 are same as in
Fig. 10. Solid line is Nu for flow past a rigid sphere ðh ¼ 0:025Þ, dashed
lines are Nu for rigid and soft sphere for t1, dash-dot lines are Nu for t2,
and dash-dot-dot lines are Nu for t3. Lines for falling rigid sphere are
marked with dark circles.

Fig. 12. Variation of Nusselt number for Re ¼ 100 for rigid and
deformable spheres. Legend – see Fig. 11.

Fig. 13. Variation of pressure coefficient Cps for Re ¼ 100 for rigid and
deformable spheres. Legend – see Fig. 11.
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of the body in comparison with the rigid sphere. This indi-
cates an increase in the drag force for the deforming sphere.
For Re ¼ 50 the drag coefficient for soft sphere is approx-
imately 1.3 times greater than that for the rigid sphere and
is equal to Cd ¼ 2:2. Our calculations give the drag coeffi-
cient for rigid sphere Cd ¼ 1:65 that differs by about 5%
from the known value Cd ¼ 1:57 [45].
6. Concluding remarks

A numerical method for simulating Fluid–Structure

Interaction problems with heat transfer has been presented.
The method developed uses the Immersed Boundary

Method for resolving complex boundaries for the fluid
flow, and couples this with the Material Point Method for
the structural stresses and deformation. The methodology
is ideally suited for flow problems with initially complex
geometries where the surfaces undergo large structural
deformation. The methodology is demonstrated on a num-
ber of simple test cases including those involving heat
transfer and show reasonable qualitative and quantitative
agreement with published results.

Simulations of flow and heat transfer around a
deforming hot sphere show that the sphere deforms in
an inverted pean shape and Nusselt number distributions
for deforming sphere have lower magnitudes relative to
a solid rigid sphere. The location of minimum Nu is
shifted to a lower h=p value for the deforming sphere
in view of the altered flow structure. Pressure distribu-
tions for the rigid and deformable sphere also differ
from each other.
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